国产一级在线_欧美一日本频道一区二区三区_久久精品视频9_欧美性生交大片

 
 
當前位置: 首頁 » 資訊 » 技術 » 正文

淺析大功率LED芯片技術發展狀況

放大字體  縮小字體 發布日期:2014-01-02 來源:新世紀LED網瀏覽次數:38

  大功率芯片技術專注于如何提升出光效率來提升芯片的發光效率,主要技術途徑和發展狀況闡述如下:

  一:改變芯片外形的技術

  當發射點處于球的中心處時,球形芯片可以獲得最佳的出光效率。改變芯片幾何形狀來提升出光效率的想法早在60年代就用于二極管芯片,但由于成本原因一直無法實用。在實際應用中,往往是制作特殊形狀的芯片來提高側向出光的利用效率,也可以在發光區底部(正面出光)或者外延層材料(背面出光)進行特殊的幾何規格設計,并在適當的區域涂覆高防反射層薄膜,來提高芯片的側向出光利用率。

  1999年HP公司開發了倒金字塔形AlInGaP芯片并達到商用的目標,TIP結構減少了光在晶體內傳輸距離、減少了內反射和吸收(有源區吸收和自由截流子吸收等)引起的光損耗、芯片特性大幅度改善,發光效率達100流明/瓦(100mA,610nm),外量子效率更達到55%(650nm),而面朝下的倒裝結構使P-N結更接近熱沉,改善了散熱特性,提高了芯片壽命。

  二:鍵合技術

  AlGaInP和AlGaInN基二極管外延片所用的襯底分別為GaAs和藍寶石,它們的導熱性能都較差。為了更有效的散熱和降低結溫,可通過減薄襯底或去掉原來用于生長外延層的襯底,然后將外延層鍵合轉移倒導電和導熱性能良好熱導率大的襯底上,如銅、鋁、金錫合金、氮化鋁等。鍵合可用合金焊料如AuSn、PbSn、In等來完成。Si的熱導率比GaAs和藍寶石都好,而且易于加工,價格便宜,是功率型芯片的首選材料。

  2001年,Cree推出的新一代XBTM系列背面出光的功率型芯片,其尺寸為0.9mmx0.9mm,頂部引線鍵合墊處于中央位置,采用"米"字形電極使注入電流能夠較為均勻的擴展,底部采用AuSn合金將芯片倒裝焊接在管殼底盤上,具有較低的熱阻,工作電流400mA時,波長405和470nm的輸出光功率分別為250mW和150mW。

  三:倒裝芯片技術

  AlGaInN基二極管外延片一般是生長在絕緣的藍寶石襯底上,歐姆接觸的P電極和N電極只能制備在外延表面的同一側,正面射出的光部分將被接觸電極所吸收和鍵合引線遮擋。造成光吸收更主要的因素是P型GaN層電導率較低,為滿足電流擴展的要求,覆蓋于外延層表面大部分的半透明NiAu歐姆接觸層的厚度應大于5-10nm,但是要使光吸收最小,則NiAu歐姆接觸層的厚度必須非常薄,這樣在透光率和擴展電阻率二者之間則要給以適當的折衷,折衷設計的結果必定使其功率轉換的提高受到了限制。

  倒裝芯片技術可增大輸出功率、降低熱阻,使發光的pn結靠近熱沉,提高器件可靠性。2001年Lumileds報道了倒裝焊技術在大功率AlInGaN基芯片上的應用,避免了電極焊點和引線對出光效率的影響,改善了電流擴散性和散熱性,背反射膜的制備將傳向下方的光反射回出光的藍寶石一方,進一步提升出光效率,外量子效率達21%,功率換效率達20%(200mA,435nm),最大功率達到400mW(驅動電流1A,435nm,芯片尺寸1mmx1mm),其總體發光效率比正裝增加1.6倍。

  四:全方位反射膜

  除在鍵合界面制備金屬基反射層外,也可以通過外延技術生長具DBR層的AlInGaP和AlInGaN基芯片,但由于DBR反射率隨著入射角的增加迅速減少,以全方位平均仍有較高的光損耗,反射膜效率不高。

  金屬基全方位反射膜可應用于正裝芯片也可應用于倒裝芯片。金屬基全方位反射膜可有效提升出光效率,但必須解決如何制備低阻歐姆接觸,高的全方位反射率,和在后續工藝過程中反射膜不會被損害而失去低阻高反射的特性等。

  五:金屬鍵合剝離技術

  美國惠普公司結合鍵合技術最早采用大襯底剝離技術將GaAs襯底與外延層剝離,然后將外延層粘接在透明的GaP襯底上制備AlInGaP基芯片,此項技術可以提高近2倍的發光效率。

  1996年報道了用激光技術將2英寸HVPEGaN與藍寶石剝離,用Si(或金屬)襯底取代藍寶石襯底的AIGaInN功率型芯片主要由三個關鍵工藝步驟完成:①在外延表面淀積鍵合金屬層如Pd100nm,以及在鍵合底板上如Si底板表面淀積一層1000nm的銦;②將外延片低溫鍵合到底板上;③用KrF脈沖準分子激光器照射藍寶石底面,使藍寶石和GaN界面的GaN產生熱分解,再通過加熱(40度)使藍寶石脫離GaN。

  2003年2月,德國OSRAM公司用激光技術將藍寶石去除,使芯片的出光效率提至75%,是傳統芯片的3倍。采用將芯片鍵合到Cu片上再激光剝離藍寶石襯底,可使散熱能力提高4倍,發光功率也提升4倍。

  六:表面粗糙化

  表面粗糙化主要是將那些滿足全反射定律的光改變方向,繼而在另一表面或反射回原表面時不被全反射而透過界面,并能起防反射的功能。表面粗糙通過散射光的方向減少內反射,但同時又不能損傷材料的電光特性。透射率的增加被認為是表面粗糙化的主要功能,優化的表面粗糙(430nm球狀起伏表面)可使出光效率可以達到54%。

  德國Osram公司于2001年研制出新一代的AlInGaP基芯片,采用最新設計將芯片窗口層表面腐蝕成能夠提高出光效率的紋理結構,見圖2-10。芯片表面紋理的基本單元為具有斜面的三角形結構,光子的反射路線被封閉在這樣的結構之中,使有源層發出的光子能夠更有效地被取出。歐姆接觸電極的幾何圖形位于出光結構注入電流的部位,這樣可使注入電流更有效的擴展到有源區。外延片的布拉格反射層被設計成具有較寬的反射角度,這樣可使芯片背反射的大部分被覆蓋。采用這種紋理表面結構的AlInGaP基芯片可以獲得大于50%的外量子效率,芯片封裝后的功率轉換效率超過30流明/瓦,是常規AlInGaP基芯片(GaAs襯底)的2倍,與采用晶片鍵合技術的AlInGaP基芯片(GaP透明襯底)性能相當但工藝簡單成本低。紋理表面結構對光束角特性沒有影響,不僅可取代常規的方形芯片,而且還可以很容易按比例放大應用于功率型的大尺寸芯片,而晶片鍵合透明襯底的AlInGaP基芯片(GaP透明襯底)由于技術復雜只能應用于3英寸的GaAs襯底。在降低生產成本和實現產業化規模生產方面,紋理表面高效取光結構的AlInGaP基芯片(GaP透明襯底)具有廣闊的發展前景。

  AlInGN基芯片也可通過把p-GaN表面粗化,提升出光效率,但直接粗化容易對有源層造成損傷,同時透明電極更難制備。目前通過改變外延片生長條件得到表面粗化是一個較為可行的工藝。1999年Fuji報道將AlInGaN基芯片鍵合到硅基板上,再用激光剝離法去除襯底,在n型GaN表面通過光致電化學法腐蝕形成有序的錐型形狀可以增加發光強度2.3倍。除表面粗糙外,芯片的側面粗糙也能進一步提升出光效率,表面粗糙的外量子效率22%,側面粗糙后可達31%。通過在ITO/NiOx上制備有規則紋理結構(3mmx3mm)可以使芯片發光功率從6.1mW提升到7.1mW。P型GaN表面的微觀粗糙(金屬納米束沉積輔助以濕法腐蝕)可增加出光效率62%。采用表面粗糙化加背面反射膜結構,外量子效率可達40%。

  七:微芯片陣列

  微芯片陣列可以增加發光效率,其原理尚不清楚。有人認為是應力釋放導致介電電場的減弱,提升了芯片的內量子效率,也有人認為是微芯片陣列提高了外量子效率。外量子效率的提升得益于微芯片陣列中芯片周邊面積的增加,一般微芯片直徑約10μm,芯片厚度約1μm,芯片表面積與周邊面積之比可達1:1.4,顯然芯片周邊面積提供了更多的出光表面積。微芯片陣列可以增加出光效率,倒裝后從藍寶石的出光效率可進一步通過在藍寶石上制備微透鏡提高每一顆微芯片的出光效率,采用ICP法在藍寶石上制備與微芯片相對集成在一個器件上的微凹透鏡,與平坦藍寶石表面相比,微透鏡可增加出光強度約30%。

  八:光子晶體

  淺二維表面柵格光子晶體可避免對有源區的損傷和在光子晶體制備過程導入太多表面損傷,引發內量子效率的下降,同時又能發揮光子晶體的衍射,改變光的入射角而提升出光效率1.7-2.7倍,制作過程涉及電子束光刻和刻蝕工藝制備晶格常數級大小的柵格幾何結構。

 
【版權聲明】本網站所刊原創內容之著作權為「中國半導體照明網」網站所有,如需轉載,請注明文章來源——中國半導體照明網;如未正確注明文章來源,任何人不得以任何形式重制、復制、轉載、散布、引用、變更、播送或出版該內容之全部或局部。
關鍵詞: LED LED芯片 大功率
 
[ 資訊搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]

 
0條 [查看全部]  相關評論

 
關于我們 | 聯系方式 | 使用協議 | 版權隱私 | 誠聘英才 | 廣告服務 | 意見反饋 | 網站地圖 | RSS訂閱
 
国产一级在线_欧美一日本频道一区二区三区_久久精品视频9_欧美性生交大片
高清在线成人网| 成人精品小蝌蚪| 一区二区三区色| 蜜臀av性久久久久蜜臀aⅴ | 国产精品自拍一区| 欧美亚洲国产一卡| 国产三级久久久| 日韩电影在线免费| 色又黄又爽网站www久久| 久久丝袜美腿综合| 午夜精品久久久久久久| 91亚洲精华国产精华精华液| 亚洲精品一区二区精华| 日日欢夜夜爽一区| 色婷婷国产精品| 国产欧美精品国产国产专区| 美洲天堂一区二卡三卡四卡视频| 在线观看欧美精品| 日韩久久一区二区| 粉嫩一区二区三区在线看| 欧美大胆人体bbbb| 日韩精品成人一区二区三区| 一本一道久久a久久精品| 国产精品欧美经典| 成人一区在线看| 日本一区二区动态图| 国产老妇另类xxxxx| 欧美不卡在线视频| 免费精品99久久国产综合精品| 欧美在线免费观看视频| 亚洲色图在线播放| 91麻豆成人久久精品二区三区| 国产精品丝袜91| 成人免费观看视频| 中国av一区二区三区| 不卡一二三区首页| 国产精品久久久久三级| bt欧美亚洲午夜电影天堂| 国产精品白丝在线| av电影天堂一区二区在线观看| 中国色在线观看另类| 99在线精品免费| 一区二区三区在线视频观看58| 色综合中文字幕国产 | 国产人久久人人人人爽| 国产成人综合在线观看| 欧美激情在线看| 99久久国产免费看| 亚洲制服欧美中文字幕中文字幕| 欧美视频一区二| 日韩不卡免费视频| 久久奇米777| av综合在线播放| 亚洲高清免费在线| 欧美成人女星排行榜| 粉嫩av亚洲一区二区图片| 亚洲欧洲av另类| 欧美日韩国产一级片| 久久国产精品99久久久久久老狼| 精品福利视频一区二区三区| 精品乱人伦小说| 激情六月婷婷综合| 中文成人av在线| 欧美日韩精品综合在线| 秋霞午夜鲁丝一区二区老狼| 久久精品男人的天堂| 91浏览器入口在线观看| 首页亚洲欧美制服丝腿| 国产日产欧美一区二区视频| 欧美在线综合视频| 久久99九九99精品| 国产精品色哟哟| 在线播放亚洲一区| 不卡电影一区二区三区| 视频在线在亚洲| 国产精品色噜噜| 欧美色偷偷大香| 国产精品99久久久久久似苏梦涵| 亚洲人亚洲人成电影网站色| 欧美丰满少妇xxxxx高潮对白 | 国产福利一区二区三区在线视频| 亚洲精品久久久蜜桃| 欧美成人一区二区三区| 91久久精品一区二区三区| 激情欧美一区二区三区在线观看| 中文字幕在线不卡一区| 欧美xxxxxxxx| 欧美性猛交xxxx黑人交| 成人精品视频一区| 久久国产三级精品| 亚洲成人午夜电影| 亚洲欧洲性图库| 久久久久久夜精品精品免费| 欧美日韩国产不卡| 99久久精品免费看| 国产精品一区二区久久不卡| 天天av天天翘天天综合网 | 国产精品传媒视频| 精品精品国产高清a毛片牛牛| 欧美性极品少妇| 成人aaaa免费全部观看| 激情深爱一区二区| 视频一区中文字幕| 亚洲午夜私人影院| 国产精品日日摸夜夜摸av| 精品国精品国产| 91精品在线免费观看| 欧美性色黄大片| 色天使色偷偷av一区二区| av日韩在线网站| 成人18视频日本| 国产91精品精华液一区二区三区| 欧美国产乱子伦 | 美女视频黄a大片欧美| 亚洲精品久久久蜜桃| 国产精品视频麻豆| 久久久久久久久久久久久女国产乱| 欧美剧在线免费观看网站| 在线观看91精品国产入口| 91极品美女在线| 91麻豆国产香蕉久久精品| 91在线观看视频| 91欧美激情一区二区三区成人| www.亚洲精品| 99精品视频在线观看| 一本久久精品一区二区| 在线日韩国产精品| 欧美性猛片xxxx免费看久爱| 欧美亚洲综合久久| 欧美色男人天堂| 国产精品一区二区在线观看网站| 精品久久久三级丝袜| 最新国产精品久久精品| 欧美色图天堂网| 欧美福利视频一区| 成人午夜私人影院| 成人黄色在线看| 丁香婷婷深情五月亚洲| 国产成人在线免费观看| 粉嫩一区二区三区在线看| av在线免费不卡| 91丨九色porny丨蝌蚪| 99视频热这里只有精品免费| 91视频.com| 欧美日韩一区二区三区在线| 538在线一区二区精品国产| 精品日韩99亚洲| 中文乱码免费一区二区| 亚洲午夜影视影院在线观看| 麻豆国产欧美一区二区三区| 丁香激情综合国产| 在线观看日韩电影| 欧美大片顶级少妇| 国产精品国产精品国产专区不蜜| 亚洲一区在线观看免费观看电影高清| 天堂va蜜桃一区二区三区| 国产精品1024久久| 91久久免费观看| 精品福利二区三区| 最新不卡av在线| 日本亚洲欧美天堂免费| 国产mv日韩mv欧美| 欧美久久久久中文字幕| 国产三级精品三级在线专区| 一区二区三区精密机械公司| 国内精品伊人久久久久av一坑| 色婷婷激情综合| 久久久亚洲高清| 性欧美疯狂xxxxbbbb| 国产suv精品一区二区6| 欧美精品丝袜中出| 国产精品传媒在线| 美国毛片一区二区三区| 在线一区二区三区四区五区| 2021久久国产精品不只是精品| 亚洲另类在线视频| 国产一区二区不卡在线 | 国产精一区二区三区| 色偷偷成人一区二区三区91| 日韩欧美一区在线| 一区二区三区在线免费播放| 国产一区二区调教| 欧美日韩国产综合久久| 亚洲图片欧美激情| 国产乱码一区二区三区| 欧美一卡在线观看| 亚洲激情中文1区| 国产成人在线视频播放| 日韩欧美在线网站| 五月激情六月综合| 日本韩国一区二区| 国产精品成人免费精品自在线观看 | 婷婷开心激情综合| 91碰在线视频| 国产日产精品一区| 精品午夜久久福利影院| 欧美日韩久久久| 一区二区三区91| 一本久久综合亚洲鲁鲁五月天 | 亚洲一区二区偷拍精品|