一、研究背景
膠體NPLs只在厚度方向上具有量子限域效應(yīng),從而產(chǎn)生了獨特的光學(xué)特性,如極窄的發(fā)射線寬、較短的光致熒光壽命、各向異性躍遷偶極子分布、高增益系數(shù)和超低的激光閾值。這些獨特的光學(xué)特性使NPLs為光電子應(yīng)用提供了巨大的潛力,包括太陽能聚光器、固態(tài)激光器和LEDs。由于NPLs的偶極子分布可控,NPL-LEDs的EQE可以達(dá)到約40%的理論極限,是QLEDs理論極限的1.5倍。然而,相比于膠體量子點,膠體NPLs的生長是由側(cè)面和頂面之間不平衡的表面能驅(qū)動,合成的NPLs由于側(cè)面能量高而穩(wěn)定性差,導(dǎo)致配體結(jié)合能低和缺陷態(tài)增加。此外,NPLs的熱力學(xué)穩(wěn)定性較低且高溫易熟化,增加了NPLs高溫包殼的難度。雖然低溫膠體原子層沉積方法適用NPLs生長殼層,可實現(xiàn)多種核/殼結(jié)構(gòu),且避免了與低熱穩(wěn)定性相關(guān)的問題。然而,低溫獲得的核/殼NPLs通常表現(xiàn)出相對較低的熒光量子產(chǎn)率(PLQY)且純化步驟復(fù)雜。為了進(jìn)一步提高NPLs的PLQY,研究者通過添加油酸金屬絡(luò)合物來提高CdSe基NPLs的熱力學(xué)穩(wěn)定性,最大限度減少了NPLs在高溫下的熟化。雖然NPLs合成方法與NPL-LEDs制備工藝發(fā)展迅速,但仍落后于最先進(jìn)的QLEDs。
二、成果簡介
針對以上問題,北京理工大學(xué)李紅博教授課題組通過引入過渡冠(CdSeS)結(jié)構(gòu)以提升CdSe基NPLs側(cè)面的穩(wěn)定性,抑制高溫長殼過程中的熟化作用,并構(gòu)建合金梯度(CdZnS)殼層結(jié)構(gòu)來提高CdSe基NPLs的量子產(chǎn)率和穩(wěn)定性。最終獲得尺寸均勻(平均長、寬和厚度分別為23.21±1.01,20.01±0.75和4.81±0.19 nm)、分散良好的CdSe/CdSeS/CdZnS核/冠/殼NPLs,顯示出了100%的量子產(chǎn)率和高穩(wěn)定性。結(jié)果表明,與傳統(tǒng)的CdZnS殼層相比,CdSeS/CdZnS冠/殼可以有效地抑制CdSe基NPLs的非輻射俄歇復(fù)合。在飛秒激光激發(fā)下,合成的CdSe/CdSeS/CdZnS核/冠/殼NPLs的光增益閾值為2.11 μJ/cm2,低于CdSe/CdZnS核/殼NPLs(2.56 μJ/cm2)以及報道的CdSe/CdZnS核/殼NPLs的最低閾值(2.35 μJ/cm2)。此外,基于設(shè)計的核/冠/殼NPLs制備了LEDs,顯示出了高亮度(134306 cd/m2)和高效率(EQE為30.1%),并呈現(xiàn)了 飽和純紅發(fā)射和優(yōu)異的工作壽命(T95>600 h在1000 cd/m2亮度下)。這是迄今為止報道的NPL-LEDs的最高效率值。
三、圖文導(dǎo)讀
Figure 1. a) Schematics showing the propagation of light emitted from vertical (top) and horizontal (bottom) dipoles. is the critical angle. b) Random dipole orientations of QDs and horizontally aligned dipole orientations of NPLs. c) Schematics showing light propagation and loss in QLEDs (top) and NPL-LEDs (bottom). In QLEDs, most photons are trapped inside the substrate, while in NPL-LEDs, due to the in-plane oriented dipole moments, emission perpendicular to the substrate is enhanced. d) Scheme of the synthesis of CdSe/CdSeS/CdZnS core/crown/shell NPLs. TEM images and EDS mappings of e) CdSe/CdSeS NPLs and f) CdSe/CdSeS/CdZnS NPLs, showing their highly uniform morphology.
Figure 2. Color map of in situ PL spectral evolution of the CdZnS shell growth process on a) CdSe/CdSeS/CdZnS NPLs and b) CdSe/CdZnS NPLs. c) PL FWHM and PL peak position of the CdSe/CdSeS/CdZnS NPLs and CdSe/CdZnS NPLs extracted from (a) and (b). d) Absorption and PL spectra (excited at 400 nm) of the final CdSe/CdSeS/CdZnS and CdSe/CdZnS NPLs. Inset is a photograph of CdSe/CdSeS/CdZnS NPLs in hexene. e) TRPL dynamics of CdSe/CdSeS/CdZnS NPLs and CdSe/CdZnS NPLs. f) The biexciton recombination kinetics of CdSe/CdSeS/CdZnS NPLs and CdSe/CdZnS NPLs extracted from transient absorption measurements can be fitted by single-exponential decay (green line) with lifetimes of 1574 and 1182 ps, respectively. The pump fluence-dependent kinetic curves are shown in Figure S18 (Supporting Information).
Figure 3. PL spectra of a) CdSe/CdSeS/CdZnS NPLs and b) CdSe/CdZnS NPLs at different excitation densities, insets show the integrated PL intensity as a function of excitation density. Temperature-dependent PL spectra (excited at 400 nm) of c) CdSe/CdSeS/CdZnS NPLs and d) CdSe/CdZnS NPLs. e) PLQY and f) TRPL dynamics of CdSe/CdSeS/CdZnS NPLs and CdSe/CdZnS NPLs in solution and film.
Figure4. a) AFM image and b) PL mapping and c) BFP image of CdSe/CdSeS/CdZnS NPLs films spin-coated on HTL. d) Comparison between simulated (70% and 100% horizontal dipoles) and experimental BFP image line cuts along the red line shown in Figure 4c.
Figure 5. a) Schematic of the NPL-LEDs device structure. b) Energy level diagram of NPL-LEDs. c) EL spectra of NPL-LEDs under different driving voltages, inset shows the corresponding CIE coordinates (0.68,0.31). d) Variation of EQE and current efficiency versus current density. e) Variation of current density and luminance versus voltage, The inset shows a photograph of a working NPL-LEDs emitting uniformly over the entire device area. f) Operating lifetime characteristics of NPL-LEDs at a luminance of 10600 cd m−2.
四、作者簡介
李紅博,北京理工大學(xué)材料學(xué)院教授,博士生導(dǎo)師,2010年中國科學(xué)院理化技術(shù)研究所獲博士學(xué)位,2010年至2017年先后在意大利理工學(xué)院和美國洛斯阿拉莫斯國家實驗室從事博士后研究。主要從事無機(jī)半導(dǎo)體納米晶的化學(xué)合成、光譜調(diào)控、以及光電器件的制備和光伏技術(shù)應(yīng)用等研究。在包括Nature Energy、 Nature Photonics、 J. Am. Chem. Soc.、Adv. Mater.、Matter等學(xué)術(shù)期刊上累計發(fā)表學(xué)術(shù)論文60余篇,引用超過4000次,6篇論文入選ESI高引用論文。任Rare Materials和《中國材料進(jìn)展》青年編委,Energy Material Advances青年主編。
曾毅成,2024年6月獲得北京理工大學(xué)博士學(xué)位。主要研究領(lǐng)域為量子點發(fā)光材料的合成及其電致發(fā)光器件的研究,目前以第一作者在Adv. Mater., Adv. Funct. Mater., Nano Lett.等期刊共發(fā)表SCI論文11篇。
五、論文信息
Improved Efficiency and Stability in Pure-Red CdSe Nanoplatelet LEDs Enabled by Gradient Alloyed CdSeS/CdZnS Crown/Shell
Yicheng Zeng, Wenke Yu, Yuan Liu, Weiwei Chen, Qingya Wang, Fan Cao, Jing Wei, Fangze Liu, Xuyong Yang, and Hongbo Li*
Advanced Materials
DOI: 10.1002/adma.202415569